Department of Life Science Pathomechanism study and drug identification of neurodegenerative diseases

Major objectives of my studies: (1) Generating *Drosophila* models for various neurodegenerative diseases; (2). Dissecting the underlying pathomechanisms of these diseases; (3) Identifying druggable targets and screening potential compounds.

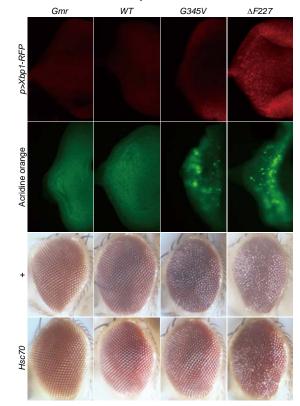
Techniques used in study

Drosophila models for neurodegenerations: Generation of gain- or loss- of function models using germline transformation: Alzheimer's disease, SCA3, SCA12, SCA17 and SCA19/22 Phenotypic and pathological characterization: Degenerative morphological changes, Motor function, Lifespan Gene expression and function characterization: qPCR, WB, IHC, Co-IP

Drug screening and evaluation

Ming-Tsan Su, Associate Professor Department of Life Science, College of Science mtsu@ntnu.edu.tw

Background:


PhD in Biology, University of Michigan, Ann Arbor, MI, USA

Funding:

Ministry of Science and Technology

Mutant KCND3 induces ER stress, and ER chaperones Hsc70 suppresses the neurotoxicity of the mutant KCND3 proteins

Publications

 Hsu, T.C., Wang, C.K., Yang, C.Y., Lee, L.C., Hsieh-Li, H.M., Ro, L.S., Chen, C.M., Lee-Chen, G.J. and Su, M.T. * (2014) Deactivation of TBP contributes to SCA17 pathogene-sis. Hum Mol Genet, 23, 6878-6893.

